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Abstract 

The discovery of Giant Magnetoresistance (GMR) in 1988 was of great importance to 

both the research community and industry. The existence of GMR effects has allowed for 

increase in hard drive storage capacity, and has future potential for use in non-volatile 

memory and spin-valve transistors. GMR effects are seen in stacks of thin ferromagnetic 

materials separated by non-magnetic spacer layers. Layer thicknesses are normally on the 

order of 10 to so A. 

GMR sandwich structures using Nickel Iron Cobalt (NiFeCo) alloy, Iron Cobalt 

(FeCo) alloy, Tantalum (Ta), and Copper (Cu) were deposited using Electron Beam (E-

beam) Evaporation techniques on Silicon (Si) wafers. A fabrication process was developed 

to use equipment available at the Microelectronic Research Center. The structures were 

tested with bulk measurement techniques, Van der Paw patterned measurements, and bar 

resistor measurements. Films were further characterized using four-point probe resistivity 

measurements, Scanning Electron Microscopy (SEM), and X-ray diffraction (XRD). 
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Introduction 

When giant magnetoresistance (GMR) was first discovered in 1988, its importance 

was immediately recognized by the research community and industry alike. It has long been 

known that the path of an electron is altered as it passes through a magnetic field. In metals, 

changes in electrons' paths cause variations in the resistances. This effect is even more 

predominant in magnetic materials. The varying effect of the field in relation to the 

direction of the current flow is also very important. Current flow that is parallel to the 

applied field will see different variation compared to current flowing perpendicular to the 

field. This effect is known as magnetoresistance. These magnetoresistant changes vary 

between different materials from no variation to 5% variation in the most extreme cases. 

However, in 1988 Baibich et al. [l] and Binasch et al. [2] reported magnetoresistive 

changes on the order of 50% at low temperatures in Iron (Fe)/Chromium (Cr) ultrathin 

multilayer structures. This phenomenon was inconsistent with the theoretical predictions. 

These extremely large changes of resistivity were later found to occur in other multilayer 

structures consisting of alternating magnetic and nonmagnetic materials. The explanation of 

the GMR effect is due to the characteristics of the electron as it passes through different 

materials. 

The Electron 

GMR is a direct result of the unique characteristics of the electron. These tiny 

negatively charged particles are the current carrying elements in metallic materials. There 
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are three distinctive properties of an electron: a negative charge, a small atomic mass, and the 

spin. It is the spin of the electron that is the foundation of GMR effects. 

As the negatively charged electron spins about itself, it generates a magnetic field. In 

most materials there are equal numbers of electrons spinning in opposite directions, 

canceling out their individual moments, resulting in a net magnetic field equal to zero. In a 

few metals, like Iron (Fe), Nickel (Ni) and Cobalt (Co), the electrons are energetically 

favored to spin in the same direction. This gives rise to a net magnetic field and a magnetic 

material. 

When a magnetic material is magnetized, the laws of quantum mechanics require that 

there be only two directions of spin for an electron. An electron is allowed to spin such that 

its own magnetic field will align with or opposite to the magnetization. When the electron's 

field is aligned with the magnetization it is said to have 'up' spin. Alternatively, if the 

electron's field is opposite to the magnetization it has 'down' spin. In a magnetic field most 

electrons' spins are in the up direction. In nonmagnetic materials, all spins of electrons are 

expected to respond to magnetic fields in identical ways. 

Multilayer structures 

The effects of GMR are typically observed in multilayer structures where two 

magnetic layers are separated by a thin nonmagnetic material. Depending on the relative 

direction of the magnetization within the magnetic materials, the paths of the up and down 

electrons will vary. Figure 1 shows a simple depiction of the two possible cases for a simple 
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multilayer structure. The directions of the magnetic fields within the magnetic materials are 

noted. 

Figure 1 - Electron passing through multilayer GMR stack 

If the fields within the two magnetic materials are in the same direction (Figure 1-A), one 

direction of spin will be able to pass without interference, but the opposite spin will 

encounter difficulties passing through both magnetic layers. When the fields are opposite 

(Figure 1-B), electrons of both spin types will experience difficulty as they pass through the 

structure. While both fields are aligned, the structure has the lowest resistance. 

The scattering events that occur in the magnetic materials can more precisely be 

described in terms of Fermi levels. The band structure of a ferromagnetic material is 

exchange split, so the density of states for an up electron will be different from that of a 



www.manaraa.com

4 

down electron. Fermi's law states that the scattering rate is proportional to the density of 

states. Therefore, the up and down electrons will have different scattering behaviors in the 

magnetic materials [10]. 

As a result, two conditions must be met to see GMR effects. First, the thickness of 

the films used must be less than the mean free path of an electron. Second, there must be a 

way to independently rotate the magnetizations of the magnetic layers. The first condition 

can be met by using ultrathin films, keeping individual layers on the order of a few atomic 

layers. The second condition is more complicated, which has resulted in several different 

solutions that achieve the desired effect. 

Antiferromagnetic Coupling 

The magnetic fields of the two magnetic layers can become linked, or coupled, to 

each other when the layer between them is sufficiently small. The amount that the two layers 

are coupled is highly dependent on the thickness of this nonmagnetic spacer. Figure 2 shows 

a plot of the relationship between GMR effects and the spacer layer in a Cobalt (Co )/Copper 

(Cu) multilayer structure, with the Co layers held constant at l lA [3]. 
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Figure 2 - Coupling versus thickness of spacer layer 

The plot in Figure 2 depicts two distinct peeks at approximately 9A and 21A, showing the 

greatest antiferromagnetic coupling factor. As the spacer layer thickness increases, the 

magnetic layers become uncoupled and do not interact with each other. 

Adjacent antiferromagnetically coupled layers are at their lowest energy state when 

their internal fields lie in opposite directions. For no applied field, the resistance of the 

multilayer structure will be large. As a magnetic field is applied to the structure the internal 

fields will rotate so they are in the direction of the applied field, reducing the resistance. At a 

sufficiently high external field, the structure will be saturated and the resistance will be at a 

minimum. Figure 3 shows the GMR effects of a Co (1 lA)/Cu (9A) multilayer structure [3]. 
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Figure 3 - GMR effect versus applied field 

The GMR effects are symmetrical around the zero field point because for any direction of 

applied field, the internal fields will align. Although this structure does show strong GMR 

response, a problem arises in the fabrication of a 9.A thick layer of copper. A copper atom is 

approximately 3.A wide, meaning a three-atom thick layer would be required. It is very 

difficult to deposit a high quality 9.A film using available deposition techniques. 

Different Coercivities 

One of the important parameters used in describing the response of a magnetic 

material to external fields is coercivity. Coercivity (He) is defined as the reverse applied 

magnetic field (H) necessary to reduce the magnetic induction (B) to zero. In relationship to 

GMR, this is the point where the internal field in the material would switch directions. 

Figure 4 shows the hysteresis loop (B vs. H) of a magnetic material. 
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H 

Figure 4 - Hysteresis loop of a magnetic material 

By using two magnetic materials with different coercivities, the internal fields of the 

layers are able to switch directions independently at different applied fields. Hysteresis loops 

of two different metals each with its own rnercivity can be seen in Figure 5. 

B 

Hc1 

H 

Figure 5 - Hysteresis loops of two magnetic materials with different coercivities 

The coercivity of metal 2 is lower than that of metal 1, so the internal field of metal 2 will 

switch directions at a lower applied field. This is shown graphically in Figure 6. The 

rotation of the internal fields is symmetrical across the zero applied field. 
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Hc2<H Hc1 < H < Hc2 

Figure 6 - Two states for materials with different coercivities 

Spin-Valves 

The spin-valve structure, first proposed by Dieny et al. [4] , consists of magnetic 

layers separated by a nonmagnetic spacer layer, thick enough that the magnetic layers are 

uncoupled. In spin-valves one of the magnetic layers is free to rotate while the other is 

pinned in one direction . Figure 7 shows the spin-valve structure proposed by Dieny et al. [5]. 
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Figure 7 - Spin-valve structure 

The Iron-Manganese (FeMn) alloy has a high coercivity, preventing its magnetization from 

freely rotating in an applied field. The direct contact between the Co and FeMn layers 

effectively pins the Co layer's internal field in the same direction. This is known as 

exchange biasing. The soft Nickel-Iron (NiFe) alloy layer is free to rotate with the applied 

field. Furthermore, the NiFe layer will rotate at much smaller applied fields than needed to 

rotate the FeMn/Co layers. Because the NiFe layer will rotate at such low fields, this 

structure is ideal for sensors and other devices used to detect small fluctuations in magnetic 

fields. 
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Pseudo Spin-Valves 

Pohm et al. [11 ,12, 13] proposed the pseudo spin-valve, which uses a similar 

structure to the spin-valve without a pinned layer. The pseudo spin-valve uses two magnetic 

layers of the same metal alloy, but differing thicknesses. This difference in thickness results 

in one of the layers switching direction before the other. In many ways , the pseudo spin-

valve structure has similarities to the structure using different coercivities (Figure 6). The 

pseudo spin-valve structure as outlined by Pohm et al. [11, 12, 13] is shown in Figure 8. 

Ta 
NiFeCo 
FeCo 
Cu 

FeCo 
NiFeCo 

Ta 

Si 

-cap 

) Free Layers 

-spacer 

) Free Layers 

-Buffer 

-Substrate 

Figure 8 - Pseudo spin-valve 

Each free layer in this structure is comprised of two metal alloys, allowing for better film 

matching at the junctions. The free magnetic layers are uncoupled due to the thickness of the 

copper spacer layer. 
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Measuring Techniques 

There are two predominant techniques used to measure GMR effects, current in the 

plane (CIP) and current perpendicular to the plane (CPP). CIP uses a four contact 

configuration on the top layer of the structure. In the CIP measurement, a current is passed 

from one contact to another, and the induced voltage is measured through the other pair of 

contacts (Figure 9). With the current held constant, an external magnetic field is applied and 

the voltage change is monitored. Fluctuations in the voltage can be used to calculate the 

magnetoresistant changes. This structure gets its name from the current's parallel path along 

the surface of the film. 

CPP uses a pair of contacts on both the top and bottom layers of the structure (Figure 

9). The current applied to one of the top contacts will pass through the device, perpendicular 

to the surface of the films, and out one of the lower contacts. This configuration will still 

induce a measurable voltage between the remaining upper and lower contacts, which will 

also change as a field is applied. 

Figure 9 shows an illustration of the two types of measurement. CIP is often easier to 

measure because the setup requires only contacts on the top surface of the device. CPP 

requires either contacts to be placed before the deposition of the layers or etching following 

deposition to make contact with the bottom layer. CIP measurements often show lower 

GMR effects than measurements made using CPP methods. 
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V+ I+ v+ t+ 

Vm :1 .. 

CIP Setup CPP Setup 

Figure 9 - CIP and CPP measurement setups 

Experimental 

This research project was broken into three stages. The first phase consisted of 

studying the field of GMR and selecting the type of GMR structure to pursue. The second 

stage was spent developing an understanding of the equipment and materials used, and 

designing a fabrication process. In the final stage, GMR devices were fabricated and 

characterized using a number of different tests. 
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Structure Description 

The sandwich structure chosen was a modification of the simple ferromagnetic -

nonmagnetic - ferromagnetic structure as proposed by Pohm at al [12]. The structure used in 

this project is shown below in Figure 10. 

Ta -cap 

NiFeCo 
FeCo 

) Free Layers 

Cu -spacer 

FeCo 
NiFeCo 

) Free Layers 

Ta -Buffer 

Si -Substrate 

Figure 10 - GMR Sandwich Structure 

The sandwich structure was deposited on a three inch Silicon (Si) wafer with an oxide layer 

of approximately 2000A. Tantalum (Ta) was used as a seed layer at the base of the structure 

to promote smooth layer growth for the subsequent layers. The ferromagnetic layer was 

divided into two separate alloys. The first ferromagnetic alloy consisted of a ratio of 65% Ni 

20% Fe 15% Co. The second ferromagnetic material was a 90% Co 10% Fe alloy. A Cu 

spacer layer was used to magnetically separate the ferromagnetic layers, allowing them to 

align independently of each other. The structure was then repeated in reverse, with the CoFe 
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layer and the NiFeCo layer following the spacer layer. The entire structure was topped with 

a thick Ta layer that helped protect the top ferromagnetic layer from oxidation. 

Calibration of Evaporator 

In GMR structures, the thickness and smoothness of the layers are very important. 

The Electron Beam (E-beam) Evaporator uses a crystal monitor to track the rate of deposition 

and film thickness. The crystal monitor utilizes the density and acoustic impedance of the 

material being deposited to perform its calculations. The accuracy of the crystal monitor is 

also determined by the geometry of the deposition chamber. Since it is impossible for the 

crystal monitor to be located at the surface of the wafer, an error must be accounted for based 

on the location of the monitor in reference to the metal source and the wafer surface. The 

percentage difference between the thickness measured by the crystal monitor and the 

thickness actually deposited on the substrate is called the tooling factor, and can be 

determined empirically. To find the tooling factor, a layer of material is deposited and the 

thickness reading on the monitor compared to the actual thickness as determined through 

other measurement techniques. The equation relating these values to the tooling is as 

follows: 

. T 
Tooling(%)= 100 *- 5 

TX 

Where Ts is the actual thickness at the substrate and T x is the thickness reading on the 

monitor. 
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Aluminum (Al) was depositecf on -Si substrates until the monitor showed 5000A. of 

metal. The Al was patterned and etched into strips using photoresist and ultra violet light 

exposure. The thickness was measured using a profilometer, which measures the changes in 

the surface of the film by allowing a small point to run across the surface. After adjusting the 

tooling, another film of Al was deposited and measured. This process was repeated until the 

thickness measured by the profilometer was within approximately 10% of the thickness 

displayed by the crystal monitor. The calibration was checked periodically by deposition of 

1 oooA Cu layers. 

Mixing Metals 

To allow for compositions of the ferromagnetic metals in the alloys to be varied, 

powdered metals were used. The desired composition was determined based on the weight 

of each metal, which was appropriate because the densities of the metals were fairly close. 

The metals were added directly to crucibles and mixed thoroughly with each other. 

In order to use the crystal monitor to track the rate and thickness of deposition, the 

acoustic impedance and density of the materials were required. These values were tabulated 

in an Inficon 6000 technical manual for bulk materials, but could only be estimated for the 

alloy compositions. It was decided to use simple weighted averages of the composition 

materials to approximate the values. The estimated density and acoustic impedance of the 

alloys and the true values of the bulk materials are shown in Table 1. 
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Table 1 - Material density and acoustic impedance 

Density (g/cm3
) 

Acoustic 
Material 

Impedance 

Co 8.71 0.343 

Fe 7.86 0.349 

Ni 8.91 0.331 

NiFeCo 8.74 0.336 

FeCo 8.49 0.345 

Evaporation 

Deposition was done using a Temescal E-beam evaporation system. The system 

consists of a lOkV power supply used to generate an electron beam. The beam is a standard 

270° arc focused by a permanent magnet [5]. A set of electromagnets allows the E-Beam to 

be positioned and swept across the metal for a controlled and even melting. The pressure of 

the system during deposition is normally on the order of 10-8 Torr, which should be sufficient 

to prevent oxidation of the film during growth. The deposition is controlled by an Inficon 

6000 control system, which allows for complete programming of the deposition process and 

monitors the rate and thickness of the deposition. 

The use of unknown metals and powdered alloys required special attention to 

thoroughly test the evaporation process. The evaporation of Ta shots worked well, but 

required a very narrow focus of the E-beam to achieve sufficient deposition rates. The alloys 

on the other hand, presented a very large obstacle. 
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Prior to evaporation, the powdered metals required a great deal of preheating to fully 

outgas any trapped oxygen. Initially, the alloys were evaporated in graphite crucibles. 

During the evaporation process, both the NiFeCo and FeCo alloys spit metal severely. 

Regardless of the heating ramp and sweep of the E-beam, the alloys remained highly 

unstable. In an attempt to remedy the problem, Alumina crucibles were used for evaporation 

of the alloys. Because of Alumina's excellent insulating properties, Ta wires were initially 

used to create a path for the electrons to flow to ground. Unfortunately, the heating of the Ta 

wires resulted in the cracking of the crucibles, and there was concern that the Ta may 

contaminate the alloys. It was determined that the cracks allowed a path for electron flow 

without the use of Ta wires, so the wires were removed. Using the Alumina crucibles 

allowed for a slow deposition rate, but spitting still occurred if the deposition was not closely 

monitored. The cracks in the Alumina crucibles were later believed to cause contamination, 

so the alloys were returned to graphite crucibles, but no change in contamination was found. 

The cause of the severe spitting is believed to have come from oxygen residing on the 

large porous surface of the powdered metals. The powdered metals were later replaced with 

0.125 shot bulk metals, which allowed higher deposition rates without spitting. 

Magnetic Field Generation 

In order to induce magnetic anisotropy within the magnetic layers, it is necessary to 

deposit the ferromagnetic materials in a magnetic field. To achieve a uniform magnetic field 

across the surface of the wafer, a set of Helmholtz coils [8] was designed, constructed, and 
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used. Helmholtz coils consist of a pair of wire coils separated by a distance equal to the coil 

radius, thus creating a uniform unidirectional magnetic field within the evaporation chamber. 

The magnetic field generated by a coil of N turns of wire can be approximated using 

the equation [8]: 

Where r is the radius of the coil, N is the number of turns, I is the current through the wire, x 

is the distance from the center of the coil and µ0 is the permeability of air. If two coils are 

placed a distance a apart and xis measured from the center point between the two coils, the 

formula for the magnetic field becomes [8]: 

The placement of the Helmholtz coils inside the evaporation system was considered, 

but the requirements for cooling in the vacuum made it impractical. It was ultimately 

decided to mount the coils externally on the E-beam system. This choice imposed strict 

design requirements on the coils, as there was limited space for the coils to fit. The final 

coils had a radius of 16 inches and were separated by 15 inches with 80 turns per coil. The 

measured field for 30 Amps operation was found to be 49 Gauss, which is sufficient to align 

the magnetic axis and induce anisotropy within the materials. 
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Fabrication Process 

The first step in the fabrication process was to thoroughly clean the Si substrates. The 

substrates were cleansed in a solution of 2500mL DI H2O + 500mL ~OH + 400mL H2O2 

for 15 minutes at 80° C. They were rinsed in DI water and dipped in a 50: 1 HF acid solution. 

A second soak in 3000mL DI H2O + 500 mL HCl + 500mL H2O2 completed the cleaning 

process. This standard cleaning process ensured that most contaminates including any 

oxidation on the substrate were removed. 

A layer of oxide was then grown on the wafers using an oxidation furnace. The 

desired thickness of oxide ranged from 1500A to 2500A. Using standard lithography 

techniques, the wafers were patterned with photoresist to prepare for lift off. The wafers 

were loaded into the evaporator, allowing the pressure to return to the low 10-8 Torr range. 

Table 2 shows the deposition rate, percent power, and thickness range for each individual 

layer. 

Table 2 - Fabrication Process 

Layer Metal Deposition Rate 
Thickness Range 

l Ta lAls@ 14% 50A 

2 Ni Fe Co 0.l-0.2Als@ 12% 40-6oA 

3 Fe Co 0.2-0.3Als @ 12% 10-30A 

4 Cu lAls@ 12% 20-4oA 

5 Fe Co 0.2-0.3Als @ 12% 10-30A 

6 Ni Fe Co 0.l-0.2Als 40-soA 

7 Ta lAls@ 14% 100-200A 



www.manaraa.com

20 

The thicknesses of the layers were varied on different samples in an attempt to improve 

GMR effects. 

After the fabrication of the GMR structure, the wafers were placed in an acetone bath 

to lift off and pattern the devices. The wafer was then thoroughly rinsed and dried with 

nitrogen. Some wafers were annealed at 285°C in a magnetic field of approximately 20 

Gauss, to improve anisotropy. Individual devices were cut apart using a diamond scribe. 

Test structures that required contacts had Indium foil pressed on and heated. 

Characterization 

Profilometry 

Profilometry measurements were taken to check the calibration of the E-beam 

evaporation system. The system utilizes a needle lightly pressed on the surface of the 

sample. As the needle is run across the surface of the sample, the pressure applied to the 

needle is tracked. A change in pressure indicates a difference in thickness along the surface 

of the substrate. The profilometer interprets the pressure data into depth change and plots the 

surface profile of the sample. By patterning a row of bars across the sample surface, it is 

possible to measure its approximate thickness. 

Two different profilometers were used throughout this project. The first was an older 

system that used a separate plotter to output the data. This profilometer outputs the height 

information in the form of a voltage signal. The plotter printed the voltage signal to show the 

profile of the wafer surface, but did not make any calculation for layer thickness. To obtain 
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layer thickness, the length of the plotted line was measured by hand and multiplied by a 

scalar value determined by the settings of the profilometer. A major drawback of this system 

is the error associated with hand measurements of lines. The second profilometry system 

used was a newer automatic system. The sample was placed onto the profilometer and was 

leveled. Using a computerized interface, the sweep of the needle was set. The computer 

controlled the measurement process, calculated, and printed out a surface profile and layer 

thickness. 

Four Point Probe 

In order to find the resistivity of the deposited layers , a linear four point probe 

configuration with a space of 0.1016 cm between the probe tips was used. An input current 

was supplied through the outer two probes , and the resulting voltage was measured between 

the two inner probes. 

Voltage was measured at five current values ranging from 5 mA to 25 mA in five 

different areas of the wafer. The measured voltage was divided by the input current to 

calculate the resistance of the layer. These resistances were used in subsequent calculations. 

To account for thin film effects, the correction factor (F) was found using the following 

equation: 

F =-In I s t (sinh(rl )J-i 

2s si nh (Yzs) 
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Where tis the thickness of the layer ands is the probe spacing. For films where the layer 

thickness was much smaller than the probe spacing, the correction factor equation was 

simplified, because the hyperbolic sign portions simply reduce to two: 

F =-t ln(2t1 
2s 

The resistivity was easy to find with the following equation: 

p = (21l)sRF 

Where R is the average resistance of the sample in one area. Another useful property of the 

layers was the sheet resistance, determined by dividing the resistivity by the film thickness. 

GMR Measurements 

The samples were prepared for testing using three unique methods to measure for 

GMR effects. Early project tests utilized whole wafers or small squares of the sample. 

Later, the structures were patterned in two different ways in attempts to improve detection of 

GMR. 

Bulk Sample 

Initially, it was believed that the GMR could be measured in the bulk wafer using 

only the four point probe system. The change in output voltage was measured as a magnetic 

field was applied. It was later found that the linear configuration of the four point probe was 
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not conducive for the needed measurements. Instead a rectangular four point probe 

measurement was needed. 

The samples were broken into smaller devices on the order of 1 cm2
. Contact to a 

sample was made at each of the four comers using four small clips of metal mounted on a 

Plexiglas border. Wires ran from the metal clips to output triaxial connections. The 

resistance was tracked using an Hewlett Packard 4145 semiconductor test station. A source 

current was applied to two adjacent comers, and the generated voltage was measured across 

the other comers. A magnetic field was generated both by a large electromagnet capable of 

5000Oe and a permanent magnet. Many variations of these measurements were carried out 

with the shape of the sample ranging from square to rectangle. 

The mounting of the samples became difficult as smaller sizes were tested. An 

attempt was made to use a semiconductor test station with small probe needles, but it proved 

too difficult to introduce a magnetic field during tests due to the limited amount of space in 

the mounting area. This approach was abandoned in favor of etched samples. 

Van der Paw 

The GMR samples were patterned into Van der Paw patterns [15] using lift off 

techniques. Two different Van der Paw patterns were used and are shown in Figure 11. 
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Figure 11 - Van der Paw Test Patterns 

Contact to both Van der Paw patterns was made at the large rectangular contact areas 

at the end of the bars. An ohmic contact was made with the GMR structure through the use 

of Indium foil. Small squares of the foil were adhered to the structure using direct pressure, 

and the sample was heated to ensure good contact. One mil gold wire was then pressed 

lightly into the Indium contact with the other end soldered to a large copper contact interface. 

A source current was applied at the copper contact to two of the bars, and the resulting 

voltage was measured across the other two bars. 

The Van der Paw pattern to the left was used first and had an inner area of 2 mm. It 

was suggested that smaller test areas might show more pronounced GMR effects, so a new 

mask with the Van der Paw pattern on the right was created. The inner square of the new 

Van der Paw patterns range from 10 µm to 2 mm. 
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Bar Resistors 

Pohm et al. have found that the use of bar resistors, as shown in Figure 12, allow for 

better detection of GMR effects [12]. 

Figure 12 - Bar resistor 

Magnetic fields generated by each ferromagnetic layer arise along the width of the bar in 

opposition to each other, causing the ferromagnetic layers to favor an antiparallel alignment. 

The bar resistors were also patterned using the lift off process. Contact to the sample 

was again made using Indium foil. A multimeter was used to sense resistance across the two 

contacts. This resistance was monitored as a magnetic field was applied. 

The sheet resistance of the film can also be found using a bar magnet if the width and 

length of the bar is known. The sheet resistance is calculated by dividing the measured 

resistance by the ratio of length to width of the bar. 
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Scanning Electron Microscopy 

Scanning Electron Microscopy (SEM) analysis allows for the surface of a sample to 

be examined at very high magnification with high resolution. The SEM often allows for a 

resolution of 4nm, a magnification of tens of thousand, and a very large depth-of-field 

enabling the viewing of samples in three-dimensions. These features allow for the 

examination of surface continuity, defects, and interfaces. 

The SEM uses an Electron Beam Gun to generate and accelerate electrons towards 

the sample. The E-beam source is designed to focus the emitted electrons into a small beam 

so they can be approximated as a point source; this is important for mathematically 

constructing a final image. To help achieve a clear image, the emitted electrons must all 

have similar energy levels. Finally, the electrons must travel on a path that is straight 

towards the sample. After exiting the gun, the electrons pass through a series of coils that 

control the beam energy, filter out any high-angle electrons, and focus remaining electrons 

into a tighter beam. The electron beam scans across the surface of the sample, pausing every 

few microseconds to gather information. As the electron beam strikes the sample surface, a 

number of interactions occur. 

Backscattered electrons 

When an electron interacts with an atom in the sample, it is reflected away from the 

sample and is known as a backscattered electron. The angle at which the electron is reflected 

is dependent on the orientation of the atom in the structure, but normally the backscattered 

electrons are reflected nearly 180° from their incoming path. The amount of backscattered 
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electrons is determined by the atomic number of the struck atom, with higher numbers 

causing more backscattering. The number of backscattered electrons are collected and used 

to create an image of the surface structure. 

Secondary Electrons 

The second interaction arises in the form of secondary electrons. As an electron 

passes near an atom in the structure, it can pass some of its energy to lower energy electrons 

in orbit around the atom. This additional energy allows electrons close to the surface of the 

sample to leave the atom. Secondary electrons are collected independently of the 

backscattered electrons and amplified because of their low energy levels. The production of 

secondary electrons is strongly dependent on the surface structure of the sample, and is used 

to acquire detailed topographical images. 

X-Ray Diffraction 

The creation of a secondary electron results in a vacancy in a low energy shell of an 

atom. A higher energy electron can fall into the lower energy state, but must give off any 

extra energy to balance the total energy of the atom. This extra energy is usually emitted in 

the form of X-rays and is the basis of the X-ray diffraction measurements. The X-rays 

generated have a unique energy level based on what type of atom from which they come. 

These energy levels can be monitored and sorted giving the composition of the sample. 
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Results and Discussion 

GMR films were deposited on Si wafers following the fabrication procedure 

previously described. In total, 30 different sandwich structures were fabricated and tested. 

The parameters for each structure are listed in Table 3. 

Table 3 - GMR Sandwich Structure Growth Parameters 

Sample ID Tox T1 T2 T3 T4 Ts T6 T7 Annealed Test 

0800-01 2000 40 40 13 27 13 40 85 1 

0800-02 2000 40 40 13 27 13 40 85 1 

0701-01 0 40 40 15 29 15 40 80 1 

0801-01 2000 40 40 15 27 15 40 100 1 

0801-02 2500 40 40 12 25 12 40 100 1 
0801-03 2500 40 40 12 25 12 40 * 100 2 
0801-04 2500 40 45 15 28 15 55 100 2 
0901-01 2500 40 45 15 28 15 55 * 100 2 
0901-02 0 40 45 15 28 15 55 * 100 2 
0901-03 0 50 40 15 27 15 60* 100 2 
1001-01 2000 40 40 15 20 15 * 55 * 100 Yes 3 
1001-02 2000 40 40 15 25 15 * 55 * 100 Yes 3 
1101-01 2000 40 40 15 30 15 * 55 * 100 Yes 3 
1101-02 2000 40 40 15 35 15 * 55 * 100 Yes 3 
0202-01 0 40 40 15 20 15 * 55 * 100 Yes 3 
0202-02 0 40 40 15 25 15 * 55 * 100 Yes 3-4 
0302-01 0 40 40 15 30 15 * 55 * 100 Yes 3-4 
0302-02 0 40 40 15 35 15 * 55 * 100 Yes 3-4 
0302-03 1600 50 40 * 15 * 32 15 * 40 * 100 Yes 3-4 
0402-01 1600 50 40 * 15 * 30 15 * 60 * 100 Yes 4 
0402-02 1600 50 40 * 15 * 30 15 * 40 * 100 Yes 4 
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Table 3 - GMR Sandwich Structure Growth Parameters Cont. 

Sample ID Tax T1 T2 T3 T4 Ts T6 T7 Annealed Test 

0402-03 1600 50 50 * 19 * 38 19 * 50 * 100 Yes 4 

0502-01 1600 50 40 * 15 * 30 15 * 40 * 100 Yes 4 

0502-02 1600 50 0 40 * 30 40 * 0 100 Yes 4 

0502-03 1600 50 0 40 * 30 50 * 0 100 Yes 4 

0502-04 1600 50 40 * 15 * 35 15 * 40 * 100 Yes 4 

0602-01 1600 50 40 * 15 * 30 15 * 40 * 100 Yes 4 

0602-02 1600 50 40 * 15 * 25 15 * 40 * 100 Yes 4 

0602-03 1600 50 40 * 0 30 0 40 * 100 Yes 4 

0702-01 1600 50 0 40 * 30 40 * 0 100 Yes 4 

* - Denotes layers deposited within a magnetic field 

The thicknesses listed in Table 3 correspond to those shown in Figure 13 . 

Ta --t 7 

NiFeCo --t6 

FeCo --t5 

Cu --t4 

FeCo --t3 

NiFeCo --t2 

Ta --t 
1 

Si --t ox 

Figure 13 - GMR Sandwich Structure 

In addition to the ferromagnetic/non-magnetic/ferromagnetic structures that were 

fabricated, two other types of devices were attempted. First, four samples of alternating Fe 
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and Co layers repeated five,-ten, fifteen, and twenty times respectively were fabricated. 

Secondly, a spin-valve with a pinned layer as shown in Figure 14 was fabricated. 

Ta 
NiFeCo 
FeCo 
Cu 

FeCo 
NiFeCo 
FeMn 

Ta 

Si 

--t. 
8 

--t 7 

--t6 

--t5 

--t4 
-t 3 
--t2 
--t 

1 

--t ox 

Figure 14 -GMR Spin-Valve Structure 

Table 4 lists the parameters for the spin-valve structure in Figure 14. 

Table 4 - GMR Spin-valve Structure Growth Parameters 

Sample ID Tox T1 T2 T3 T4 Ts T6 T1 

0202-SVl 0 45 75 35 15 25 15 35 

0202-SV2 2000 45 75 35 15 25 15 35 

0202-SV3 1600 50 40 40 15 30 15 40 

GMR Measurements 

T3 

45 

45 

100 

The samples listed in Table 3 had varying tests performed on them, as noted in the 

'Test' column. Early samples were tested using a linear four-point probe setup and are 
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denoted by a '1' in the 'Test' column. After discovering that a linear four-point probe test 

would not show GMR effects, the samples were cut into small squares, contact was made to 

each of the four comers, and voltage-current measurements were taken. A '2' in the test 

column indicate samples tested using this method. Tests marked '3' and '4' utilized a 

photoresist liftoff, allowing for smaller devices to be tested. Tests of type '3' were 

performed on small Van der Paw shapes, using an input current and measuring the output 

voltage. The test '4' patterns were simple bar resistors with two contacts. 

Each sample was tested in multiple locations across the wafer. Type '2' tests were 

performed on varying sizes of squares and rectangles for each sample. Type '3' and '4' tests 

were performed on at least five different sizes of devices. None of the tests yielded 

meaningful levels of resistance changes, each test yielding less than 0.2% change. The 

testing procedure was verified through the use of known working samples acquired from an 

independent source and was found to be accurate to the expected results. The test samples 

were further characterized in an attempt to discern what was preventing them from showing 

GMR effects. 

Hysteresis Measurements 

To gain an idea of what was happening magnetically within the samples, hysteresis 

measurements were performed on two different samples. Hysteresis measurements test the 

magnetic characteristics of an entire wafer by applying a magnetic field and measuring the 

magnetization that arises. 
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The first wafer tested had the same thickness and structure as sample 0302-03 in 

Table 3. The magnetic field vs. flux plot can be seen in Figure 15. 
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Figure 15 - Hysteresis plot 1 
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Looking at the hysteresis in Figure 15, it is seen that the easy and hard axes of the 

structure react differently from each other, also know as anisotropy. The easy axis has sharp 

transitions from low to high magnetization as the applied field changes. The transition of the 

easy axis occurs at 5.4 Oe. The hard layer's magnetization switches more gradual between 

-40 Oe to 35 Oe. The saturation magnetization of both axes is 0.65 n Wb and the coercivity 

point is at 2.28 Oe. A closer examination of the easy axis reveals that the two ferromagnetic 
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layers switch magnetization direction at nearly the same fields. Although this is normal for 

samples of this type and thickness, it is highly possible that any GMR effects would be 

missed without extremely fine control over the applied field. 

The second sample tested had the same thickness and layers as sample 0402-01 in 

Table 3. This sample had a different thickness for each of the NiFeCo layers. This 

difference was added in hopes of increasing the separation in switching fields between the 

two ferromagnetic layers. The hysteresis for this sample is shown in Figure_ 16. 
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Figure 16 - Hysteresis plot 2 
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The ferromagnetic layers are seen to switch independently from each other, at 5 Oe and 10 

Oe respectively. However, both the easy and hard axes react to the applied field in the same 

way, meaning the anisotropy seen in the first sample was lost. This may be the result of 

insufficient magnetic field during fabrication. A 300° annealing in a 50 Oe magnetic field 

was unable to induce anisotropy. 

Resistivity and Sheet Resistance 

Using linear four-point probe measurements, many GMR stacks and single layer 

films were measured to find the resistivity and sheet resistance. The electrical resistivity of a 

single Cu layer was found to be close to the expected value for a bulk material, the small 

difference mainly due to thin film effects. Because of the good correlation, the Cu layers 

were believed to be relatively pure. Measurements on the GMR stacks revealed sheet 

resistances on the order of 157-191 ohms per square. These were much higher than the 10-

20 ohms per square that was expected. The high sheet resistance of the devices indicated that 

there may have been a significant amount of oxygen within some of the layers. Very little 

information could be gathered from resistivity measurements of single alloy films because 

the resistivity of the bulk alloy composition was not exact and could only be predicted. To 

further investigate the contamination of the layers, a different characterization was needed. 
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X-Ray Diffraction 

Oxygen Incorporation 

Through the use of X-ray diffraction (XRD), the composition of individual layers was 

determined. The first sample analyzed using XRD was a 1000:A. thick layer of the NiFeCo 

alloy grown on a Si02 layer. The composition analysis of the sample is shown in Figure 17. 

Ni 

· Figure 17 - NiFeCo Composition Plot (Powdered Metals) 

Figure 17 shows a plot of both the NiFeCo layer and the Silicon dioxide (Si02) layer. The 

NiFeCo layer is displayed as the solid bars and the Si02 is the lined outline. Comparing the 

two layers, the level of Si dropped in intensity while the oxygen (02) level remained 

constant. This indicated that there was a significant amount of 0 2 in the NiFeCo alloy layer. 

In an attempt to remedy this problem, the powdered metals were replaced with metals in a 
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larger shot form. The powdered metals were believed to be more porous with a larger 

surface area, allowing for a great deal of oxygen contamination. 

A second 1000A thick sample of NiFeCo was grown on a Si02 layer and analyzed 

using XRD. Figure 18 shows a comparison between the NiFeCo alloy layer and the Si02 

layer of this sample. As with the previous sample, the amount of Si present drops off 

between the two layers, but the 0 2 content remains the same. 

Figure 18 - NiFeCo Composition Plot (Shot Metals) 

This showed that the 0 2 found in the two samples was independent of the form of metal used 

during deposition. The deposition chamber was kept at a low pressure in the range of the 

lower 10-7 Torr, so there was little concern that 0 2 was introduced into the layers during the 

evaporation process. Further analysis of the data suggested that the 0 2 seen in the XRD 

analysis was most likely due to X-rays leaking through the NiFeCo layer from the Si02 layer. 
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Layer Composition 

Although the alloys were mixed as precisely as possible, there was always concern 

that different melting temperatures and vapor pressures of the individual metals might cause 

the alloy deposited on the wafer to differ significantly from the desired alloy in the crucible. 

In addition to investigating the occurrence of 0 2 in the samples, the XRD analysis allowed a 

look at the composition of the alloy at the surface of the wafer. In Figures 17 and 18, the 

composition of the alloys was estimated by looking at the relative heights of the three metals, 

a good first order approximation. Measuring the two plots yielded a similar composition 

estimate of 59% Ni 19% Fe 22% Co, which was close enough to the desired 65% Ni 15% Fe 

20% Co to work in the fabricated structure. 

Discussion 

A number of possible problem area& were identified and worked on, yet 

improvements were few and far between. A precise balance of variables and processes 

occurring within the layers is necessary to show GMR effects. There are many possibilities 

of what may have caused the lack of GMR effects in the fabricated samples. 

First, the uniformity of layer thickness across the surface of the wafer is very 

important. The deposition system was believed to be capable of producing the necessary 

uniform films, but with such thin layers it became difficult to predict the final product. The 

alloy compositions had a tendency to spit during evaporation, resulting in non-uniformity or 

uneven layers. Further investigation of these possibilities would require the use of an 
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advanced profilometry system capable of tracking minute changes across the surface of the 

wafer. 

Next, the interface between layers is very important. Any defects at the interfaces 

will cause the mean-free path of the electrons to be greatly reduced, increasing the resistance 

of the device. The uniformity of the layers also plays an important role in the quality of the 

interface. Large thickness gradients increase the likeliness of defects between layers. 

Another possible interface problem may arise if there is sufficient oxygen in the system to 

oxidize layers between depositions. A third possible problem involves the intermixing 

between two adjacent layers during deposition. This is mostly a concern at the 

ferromagnetic/spacer interfaces. If the temperature of the wafer rises enough during 

_deposition , the metal being deposited may be able to displace atoms of the previous layer 

resulting in a FeCoCu alloy at the interface. To investigate these possibilities, further SEM 

and XRD analysis is necessary. Samples two layers thick would need to be examined along 

the edge of the wafer, allowing for a look at the profile of the interface. Through use of the 

SEM, the surface of the interface could be viewed to determine the uniformity of the layers. 

Using XRD, the composition of the metal at the interface could be resolved. The amount and 

depth of mixing, if any, could also be determined. 

A large drawback to doing characterization with the profilometry, SEM, and XRD 

tests is that they require layer thicknesses that are much greater than those used for the actual 

devices. The fact that the layer structure appears one way on a 1 OOOA sample does not 

necessarily mean they will be the same for a 40A sample. 
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Conclusions 

While this project was not completely successful in obtaining GMR effects, it did lay 

the ground work for future research into the subject. Significant research was done into the 

background of GMR, building a knowledge-base of information. A process was developed 

for the equipment available, and testing procedures were developed and verified. Helmholtz 

coils were installed around the deposition chamber to allow for fabrication in a magnetic 

field. Finally, the available equipment was brought into working order, calibrated, and 

configured for GMR fabrication. 

Giant Magnetoresistant sandwich structures were deposited on Si substrates using 

E-beam evaporation. Many samples were fabricated while varying layer thickness in an 

effort to obtain GMR effects. The samples were tested using multiple techniques and test 

equipment. To rule out test station error, independently fabricated samples were used as 

controls to show GMR effects using the test equipment. Additional samples were tested to 

obtain hysteresis plots, resistivity and sheet resistance measurements, and composition 

information in attempts to determine why the fabricated samples did not show GMR effects. 

Results from the hysteresis plots showed that the samples did react to an applied field 

as expected, indicating that they ought to show GMR. The two ferromagnetic layers were 

found to switch at very close fields, but should not have prevented GMR effects from being 

evident. Attempts to increase the difference in switching fields resulted in a loss of 

anisotropy. Saturation magnetization , coercivity, and switching field of the samples were 

within desired parameters. 
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Four-point probe measurements revealed higher than expected resistivity and sheet 

resistance. A possible cause of the increase could be contamination of the layers, but no such 

contaminant could be located using X-ray diffraction measurements. The oxygen found in 

the XRD measurements was believed to come from the oxide layer on the silicon, so was 

discounted as a contaminant. Finally, the composition of the layers was verified through the 

XRD measurements. A first order estimate of the composition showed that the alloy was 

within an acceptable range. 

Testing procedures were developed for the research center with supplies and 

equipment on hand. A complete probe station with Helmholtz coils, current source, and 

voltage meter was assembled, although was determined impractical for the measurements of 

the devices fabricated. The use of a large electromagnet with small clip probes and 

indium/gold wire contacts was developed and proved reliable for testing independently 

grown samples. Photoresist liftoff techniques were shown to work on the GMR structures 

down to details of 4 µm. Finally, a photoresist image reversal process was tested and 

calibrated for use on available equipment. 
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